Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems Part 2: The evaporative gas turbine based system and some discussions
نویسندگان
چکیده
This is Part 2 of the paper “Performance analysis of combined humidified gas turbine power generation and multieffect thermal vapor compression desalination systems — Part 1: The desalination unit and its combination with a steam-injected gas turbine power system”. A combined power and water system based on the evaporative gas turbine (EvGT) is studied, and major features such as the fuel saving, power-to-water ratio, energy and exergy utilization, and approaches to performance improvement, are presented and discussed in comparison with STIGand EvGTbased systems, to further reveal the characteristics of these two types of combined systems. Some of the main results of the paper are: the fuel consumption of water production in STIG-based combined system is, based on referencecycle method, about 45% of a water-only unit, and that in an EvGT-based system, it is 31–54%; compared with the individual power-only and water-only units, the fuel savings of the two combined systems are 12%–28% and 10%–21%, respectively; a water production gain of more than 15% can be obtained by using a direct-contact gassaline water heat exchanger to recover the stack heat; and the combined system are more flexible in its power-towater ratio than currently used dual-purpose systems. Further studies on aspects such as operation, hardware cost, control complexity, and environmental impact, are needed to determine which configuration is more favorable in practice.
منابع مشابه
Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems — Part 1: The desalination unit and its combination with a steam-injected gas turbine power system
Humidified gas turbines (HGT) have been identified as a promising way of producing power. The use of the steaminjected gas turbine (STIG) HGT cycle in a combined power and water desalination system was analyzed using energy and exergy performance criteria. A brief description and rationale of the background of HGT cycles and dual-purpose power and water systems is given. A thermal desalination ...
متن کاملThermodynamic and Exergy Analysis of a Combined Power and Desalination Plant
Making potable water through desalination plants is a very important process in Iran where clean water is highly required. On the other hand, large amount of fossil fuel sources leads to the development of gas turbine power plants all over the country. Furthermore, Persian Gulf in the south and Caspian Sea in the north could be the main sources for supplying potable water in water scarcity area...
متن کاملVarious Approaches to Thermodynamic Optimization of a Hybrid Multi-effect Evaporation with Thermal Vapour Compression and Reverse Osmosis Desalination System Integrated to a Gas Turbine Power Plant
This paper investigates the simulation of a hybrid desalination system composed of multi-effect evaporation with thermal vapour compression desalination (METVC) and reverse osmosis (RO) plant. The hybrid desalination system is also integrated with a gas turbine power plant through a heat recovery steam generator (HRSG). First, a comprehensive Thermodynamic model for HRSG, METVC, and RO are deve...
متن کاملTechnical-economic analysis of the combined system power generation, production of fresh water and cooling production
In gas power plants, a lot of energy is lost in the form of heat more than the electricity produced. In the present research, techno-economic evaluation of combined power, desalination and cooling systems running by the exhaust flue gases of a gas turbine in Iran is performed. In addition to using power generated by the gas turbine, attempts were made to use Organic Rankine Cycle to recover the...
متن کاملFuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system
Fuel allocation in a combined steam-injected gas turbine (STIG) power generation and multi-effect thermal vapor compression (METVC) desalination system is studied, using seven methods: (1) Products Energy Method, (2) Products Exergy Method, (3) Power-Generation-Favored Method, (4) Heat-Production-Favored Method, (5) Basic Exergetic Cost Theory, (6) Functional Approach and (7) Splitting Factor M...
متن کامل